- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Allen, Andrew E (1)
-
Allen, Andrew E. (1)
-
Andersson, Andreas J. (1)
-
Barbeau, Katherine A. (1)
-
Coale, Tyler H (1)
-
Horák, Aleš (1)
-
Karas, Bogumil J. (1)
-
Kindeberg, Theodor (1)
-
Kustka, Adam B. (1)
-
Lampe, Robert H (1)
-
McCrow, John P. (1)
-
McQuaid, Jeffrey B (1)
-
McQuaid, Jeffrey B. (1)
-
Oborník, Miroslav (1)
-
Zheng, Hong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The micronutrient iron is essential for phytoplankton growth due to its central role in a wide variety of key metabolic processes including photosynthesis and nitrate assimilation. As a result of scarce bioavailable iron in seawater, marine primary productivity is often iron-limited with future iron supplies remaining uncertain. Although evolutionary constraints resulted in high cellular iron requirements, phytoplankton evolved diverse mechanisms that enable uptake of multiple forms of iron, storage of iron over short and long timescales, and modulation of their iron requirement under stress. Genomics continues to increase our understanding of iron-related proteins that are homologous to those characterized in other model organisms, while recently, molecular and cell biology have been revealing unique genes and processes with connections to iron acquisition or use. Moreover, there are an increasing number of examples showing the interplay between iron uptake and extracellular processes such as boundary layer chemistry and microbial interactions.more » « lessFree, publicly-accessible full text available November 10, 2025
-
McQuaid, Jeffrey B.; Kustka, Adam B.; Oborník, Miroslav; Horák, Aleš; McCrow, John P.; Karas, Bogumil J.; Zheng, Hong; Kindeberg, Theodor; Andersson, Andreas J.; Barbeau, Katherine A.; et al (, Nature)
An official website of the United States government
